СПб и регионы России
(812) 275-70-59
Москва
(495) 972-69-80
Скидочная акция
Новые проекты
Из дерева Проект дома A-049-1D Проект дома G-068-1D Проект дома J-136-1D Проект дома L-244-1D Из кирпича Проект дома J-194-1K Проект дома K-196-1K Проект дома K-234-3K Проект дома L-235-1K Проект дома M-311-1K Проект дома M-312-1K Проект дома M-323-1K Проект дома M-621-1K Проект дома S-450-1K Проект дома S-503-1K Проект дома T-318-1K Проект дома V-901-1K Проект дома V-915-1K Из пеноблоков Проект дома B-112-1P Проект дома I-060-1P Проект дома I-188-1P Проект дома J-176-5P Проект дома J-189-5P Проект дома J-202-5P Проект дома J-207-5P Проект дома J-208-3P Проект дома K-161-1P Проект дома K-189-1P Проект дома K-216-3P Проект дома K-327-1P Проект дома L-153-1P Проект дома L-215-1P Проект дома L-248-3P Проект дома L-287-1P Проект дома M-230-1P Проект дома M-280-1P Проект дома M-282-1P Проект дома P-072-1P Проект дома R-405-1P Проект дома S-413-1P Проект дома V-548-1P Каркасные Проект дома J-127-1S Проект дома K-308-1S
Данные статьи размещены в ознакомительных целях

Теплотехнические свойства

Наверх


Общие сведения о крышах || Основные свойства кровельных материалов || Материалы для устройства и ремонта кровель || Основания под кровли || Рекомендации по устройству и ремонту кровли || Общие правила по технике безопасности и охране труда. Пожарная безопасность


  • Теплотехнические свойства
   

Гидрофизические свойства

Строительные материалы, используемые для ограждающих конструкций, каковыми являются крыши зданий с их верхней оболочкой, называемой кровлей должны быть не только прочными и долговечными, но и обладать надлежащими теплотехническими свойствами, например, теплопроводностью, теплоемкостью огнестойкостью, огнеупорностью, термической стойкостью. Теплопроводность — способность материала передавать теплоту через свою толщу при наличии разности температур по обе стороны материала. Теплопроводность зависит от вида материала, пористости, характера пор, его влажности и плотности, а также от средней температуры, при которой происходит передача теплоты. Значение теплопроводности характеризуется коэффициентом теплопроводности. Коэффициент теплопроводности также зависит от средней плотности и химико-минерального состава материала, его структуры, пористости и характера пор, средней температуры материала, влажности. С увеличением влажности материала коэффициент теплопроводности резко возрастает, так как снижаются показатели теплоизоляционных свойств материала (рис. 9).


Зависимосуь уеплопсоводносуи неосганических мауесиалов оу плоуносуи
Рис. 9. Зависимость теплопроводности неорганических материалов от плотности :
1 - материалы, насыщенные водой; 2, 3 - воздушно-сухие материалы с разной влажностью; 4 - сухие материалы.


При замерзании строительные материалы полностью теряют свойство теплоизолировать, поэтому необходимо их защищать от мороза. Ввиду того, что кровельные материалы имеют плотную структуру и не применяются на границе разных температур, теплопроводность у них значительная. При необходимости теплоизоляции в покрытиях крыш устраиваются теплоизоляционные слои.

Огнестойкость — способность материала выдерживать без разрушений одновременное действие высоких температур и воды. Пределом огнестойкости конструкции называется время в часах от начала огневого испытания до появления одного из следующих признаков: сквозных трещин, обрушения, повышения температуры на необогреваемой поверхности. По огнестойкости строительные материалы, в том числе и кровельные, делятся на три группы: несгораемые, трудносгораемые, сгораемые. Несгораемые материалы под действием высокой температуры или огня не тлеют и не обугливаются, примером может служить черепица; трудносгораемые материалы с трудом воспламеняются, тлеют и обугливаются, но происходит это только при наличии огня, например, кровельная сталь; сгораемые материалы воспламеняются или тлеют и продолжают гореть или тлеть после удаления источника огня, например дерево, толь, рубероид, стеклопластик.

Огнеупорность — способность материала противостоять длительному воздействию высоких температур, не деформируясь и не расплавляясь. По степени огнеупорности материалы подразделяются на огнеупорные, которые выдерживают действие температур от 1580 °С и выше; тугоплавкие, которые выдерживают температуру 1360... 1580°C; легкоплавкие, выдерживающие температуру ниже 1350 °С.

Теплостойкость или температуроустойчивость — способность материала сохранять форму, не стекать и не сползать с поверхности конструкции под определенным уклоном и при определенной температуре. Она зависит в основном от физико-механических свойств и структуры материала, вида и количества заполнителя. Это свойство очень важно для органических вяжущих веществ, таких, как битумы, дегти, пластмассы, которые при температуре выше температуры теплостойкости теряют свои вязкие свойства и перестают выполнять роль вяжущего. Например, теплостойкость битумной изоляции толщиной 4 мм составляет 70-90 °С, битумно-найритовой толщиной 4 мм — 100°С, битумно-латексной эмульсии толщиной 6 мм — 70 °С. Температура размягчения характеризует только битумные и дегтевые вяжущие вещества. Это условный показатель, характеризующий изменение вязкости вяжущих веществ при повышении температуры. Например, температура размягчения нефтяных строительных битумов 50...70°С; битумов нефтяных кровельных — 40...95 °С: битумов нефтяных дорожных улучшенных — 35...51 °С. Температура размягчения дегтей высоких марок обычно ниже, чем тугоплавких битумов, а именно, 40...70°С. Поэтому тугоплавкие битумы применяются для устройства покровного слоя кровельных гидроизоляционных материалов.

Температура вспышки свойственна маслам и нефтепродуктам. Температура, при которой пары нефтепродуктов, нагретых в открытом тигле, образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ним пламени, считается температурой вспышки. Температура вспышки нефтяных битумов, применяемых для кровельных материалов, 240...300°С в зависимости от битума. Минимальная температура самовоспламенения 300 °С.

Коэффициент линейного температурного расширения (ТКЛР) характеризует свойство материала изменять размеры при нагревании. Только некоторые строительные материалы при этом не расширяются. ТКЛР равен относительному удлинению материала при нагревании на один градус. У каждого материала эта величина постоянная. Например, у стали -- (11...11,9)*10-6, у бетона (10...14)*10-6°С-1, гранита — 10*10-6°С-1, дерева вдоль волокон (3...5) *10-6, у полимерных материалов в 10...20 раз больше. Во избежание растрескивания сооружения большой протяженности разрезают деформационными швами, назначаемыми с учетом термического расширения материалов. При устройстве мягкой рулонной или мастичной кровли, укладываемой по железобетонным настилам, учет ТКЛР имеет большое значение.

Механические свойства


Лидер просмотров
Проект V-550-1K Проект дома V-550-1K
Лидер продаж
Проект K-241-1P Проект дома K-241-1P